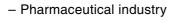
Impeller flowmeter

DIGA-10

Function

The flowmeters type DIGA-10 are impeller flowmeters.



Application

The impeller flowmeters type DIGA-10 are used for measuring volume flow of liquids.

- Chemical industry
- Research and development

The series proves itself through reliable function and easy handling.

Further characteristics of this type are:

- Universal mounting
- High accuracy
- Analog output (4 20 mA)
- High chemical resistance (ECTFE-Version)
- Threaded connection

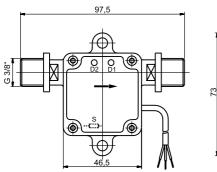
Installation hints

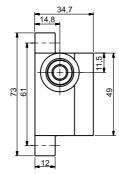
The installation of the flowmeter can be done in any orientation in the system.

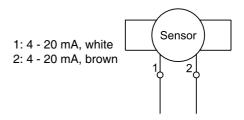
The optimum deaeration will be achieved with vertical mounting. The flow direction must be observed.

The flowmeter must not be used as a supporting part in a pipe construction.

The liquid must not contain any solids.

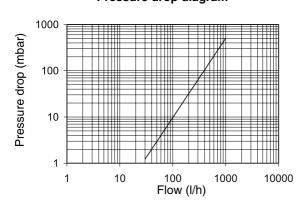

External magnetic fields influence the measurement. Keep sufficient distance to magnetic fields (e.g. electromotors).



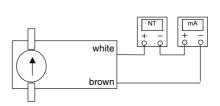


Ranges, technical data

Connection diagram


Operating data	DIGA-10 POM-version	DIGA-10 ECTFE-version
Flow range (H ₂ O at 22 °C):		
standard:	50 - 500 l/h	50 - 1000 l/h
optional (with ceramic bearing):	50 - 1000 l/h	_
Sensing principle:	inductive, touchless	
Viscosity range:	1 - 10 cSt	
Accuracy:	± 2 % of full scale (at same operating conditions)	
Repeatability:	< ± 0,8 % of full scale (at same operating conditions)	
Max. operating pressure:	5 bar	
Burst pressure (at 22 °C):	8 bar	
Operating temperature:	0° C to +80 °C	
Ingress protection:	IP65	
Output signal:	4 - 20 mA (The limiting values are adjustable by user)	
Power supply:	10 - 24 VDC (see example "Operating circuit")	
Connection cable (1 m):	round cable 2 x 0,14 mm ² LIYY	

Materials	POM-version	ECTFE-version
Housing:	POM	ECTFE
Impeller:	POM	ECTFE
Bearing (spigot bearing)		
standard (axle / bearing):	Corepoint® / POM	ceramic / ceramic
optional (axle / bearing):	ceramic / ceramic	_
Magnets:	POM-encapsulated	ECTFE-encapsulated
O-Rings:	FKM or EPDM *	FKM or EPDM *
Weight:	approx. 80 g	approx. 140 g
Process connection:	G 3/8"	G 3/8"


^{*} FKM: green colourcode

EPDM: black colourcode

Pressure drop diagram

Operating circuit (example)

